The Homotopy Perturbation Method for Solving the Modified Korteweg-de Vries Equation
نویسنده
چکیده
The homotopy perturbation method (HPM) is employed successfully for solving the modified Korteweg-de Vries equation. In this method, the solution is calculated in the form of a convergent series with an easily computable component. This approach does not need linearization, weak nonlinearity assumptions or perturbation theory. The results show applicability, accuracy and efficiency of the HPM in solving nonlinear differential equations. It is predicted that the HPM can be widely applied in science and engineering problems.
منابع مشابه
Some traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملThe Homotopy Perturbation Method for Solving K(2,2) Equation
In this paper, we present homotopy perturbation method (HPM) for solving the Korteweg-de Vries (KdV) equation and convergence study of homotopy perturbation method for nonlinear partial differential equation. We compared our solution with the exact solution and homotopy analysis method (HAM). The results show that the HPM is an appropriate method for solving nonlinear equation.
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملNew analytical soliton type solutions for double layers structure model of extended KdV equation
In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...
متن کامل